
 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 1

Full Stack Development Syllabus

With Python

Introduction to Full Stack Development

✓ Overview of full-stack development

✓ Role of a full stack developer

✓ Technologies used in Full Stack Development (front-end, back-end, databases)

✓ Setting up the development environment

 Front-End Development

✓ HTML5:

• Structure of a webpage, semantic elements

• Forms, tables, and input elements

• HTML5 new features (video, audio, etc.)

✓ CSS3:

• Styling basics: text, layout, colors, and typography

• CSS Flexbox and Grid for responsive design

• CSS animations and transitions

• Preprocessors like Sass or Less

✓ JavaScript (ES6+):

• Basic concepts: variables, data types, operators

• Functions, objects, arrays, loops

• DOM manipulation and event handling

• Introduction to ES6 features: arrow functions, promises, async/await,

destructuring, etc.

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 2

✓ Responsive Web Design:

• Media queries and mobile-first approach

• Bootstrap or Materialize framework

• Progressive enhancement and adaptive design

✓ Frontend Frameworks/Libraries:

• React.js:

▪ JSX syntax, components, and props

▪ State management with hooks

▪ Component lifecycle

▪ React Router for navigation

▪ Introduction to state management (e.g., Redux, Context API)

Back-End Development with Python

✓ Introduction to Python:

• Variables, data types, loops, and control structures

• Functions, classes, and modules

• File handling and exception handling

• Working with libraries (requests, json, etc.)

✓ Web Development Frameworks:

• Flask (lightweight framework):

o Setting up a Flask application

o Routing, templates (Jinja2)

o Handling HTTP requests and responses

o RESTful APIs with Flask

o Middleware and error handling

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 3

• Django (full-stack framework):

o Setting up Django projects and apps

o Models, Views, Templates (MVT architecture)

o Django ORM (Object-Relational Mapping)

o Django Admin interface

o User authentication and authorization

o URL routing and form handling

o Django Rest Framework (DRF) for creating APIs

Database Integration

✓ Relational Databases (SQL):

• Introduction to SQL and relational databases

• Creating and managing tables, primary and foreign keys

• Basic queries: SELECT, INSERT, UPDATE, DELETE

• Joins, aggregations, and subqueries

• SQLAlchemy ORM (for Flask) and Django ORM

✓ NoSQL Databases:

• Introduction to NoSQL databases (e.g., MongoDB)

• CRUD operations in MongoDB

• Mongoose for Node.js or PyMongo for Python

✓ Database Relationships:

• One-to-one, one-to-many, and many-to-many relationships

• Schema design and normalization

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 4

APIs and Web Services

✓ RESTful APIs:

• REST principles (stateless, client-server, uniform interface)

• HTTP methods (GET, POST, PUT, DELETE, PATCH)

• JSON and XML for data exchange

• Flask/Django for API creation

✓ GraphQL:

• Introduction to GraphQL and queries

• Setting up a basic GraphQL API using Python libraries (e.g., Graphene)

✓ Authentication & Authorization:

• Session-based authentication

• Token-based authentication (JWT)

• OAuth 2.0 for third-party login (Google, Facebook, etc.)

• User roles and permissions

Version Control and Collaboration

✓ Git:

• Git basics (cloning, committing, pushing, pulling)

• Branching, merging, and resolving conflicts

• GitHub for repository management

• Collaboration using pull requests

✓ Code Collaboration Platforms:

• GitHub/GitLab/Bitbucket for version control and code review

• Project management tools (e.g., Jira, Trello)

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 5

Testing and Debugging

✓ Unit Testing:

• Introduction to testing frameworks (e.g., PyTest, Unittest)

• Writing test cases for Python applications

• Mocking and patching external dependencies

✓ End-to-End Testing:

• Tools like Selenium or Cypress for UI testing

• Writing integration tests for APIs and databases

✓ Debugging:

• Debugging techniques using Python debugger (pdb)

• Logging errors and exceptions

 Deployment and Cloud Integration

✓ Deployment:

• Hosting on platforms like Heroku, AWS, or DigitalOcean

• Configuring a production environment (e.g., WSGI, Gunicorn, Nginx)

• Continuous integration/continuous deployment (CI/CD)

• Docker for containerizing Python applications

✓ Cloud Services:

• Using AWS, GCP, or Azure for cloud computing

• S3 for file storage, RDS for managed databases

• Serverless architecture with AWS Lambda

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 6

✓ Containerization with Docker:

• Docker basics (images, containers)

• Creating Dockerfiles for Python applications

• Docker Compose for multi-container applications

Web Sockets and Real-Time Applications

✓ Introduction to WebSockets for real-time communication

✓ Using Socket.IO with Flask or Django

✓ Building a chat application or a live notifications system

Advanced Topics (Optional)

✓ Microservices Architecture:

• Building microservices with Flask/Django

• Interservice communication via REST/GraphQL

✓ Asynchronous Programming:

• Introduction to async/await in Python

• Async frameworks like FastAPI for building high-performance APIs

✓ Serverless Architecture:

• Using AWS Lambda or Google Cloud Functions

• Building serverless APIs with Flask or FastAPI

Project Development

✓ Building a full-stack web application with Python (e.g., a blog or e-commerce site)

✓ Combining Flask/Django back end with React front end

✓ Incorporating databases and authentication

✓ Deploying the application to the cloud and ensuring scalability

